organic compounds

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 (2) K

 $R_{\rm int} = 0.025$

 $0.28 \times 0.27 \times 0.23 \text{ mm}$

12992 measured reflections

3038 independent reflections

2101 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-4-(5-Hydroxy-2-methylbenzylideneamino)-1,5-dimethyl-2-phenyl-1*H*pyrazol-3(2*H*)-one

Yun-Fa Zheng and Ming-Hua Yang*

Department of Chemistry, Lishui University, Lishui 323000, People's Republic of China

Correspondence e-mail: zjlsxyhx@126.com

Received 15 September 2008; accepted 17 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.118; data-to-parameter ratio = 13.8.

The title compound, $C_{19}H_{19}N_3O_2$, is a Schiff base compound derived from 4-aminoantipyrine and 5-hydroxy-2-methylbenzaldehyde. The molecule adopts a *trans* configuration about the central C=N bond. There is an intramolecular O-H···N hydrogen bond. Futhermore, weak C-H···O hydrogen bonds lead to the formation of a chain developing parallel to the *b* axis.

Related literature

For related literature, see: Alemi & Shaabani (2000); Kim & Shin (1999); Yan *et al.* (2006); Zheng *et al.* (2006); You *et al.* (2006).

Experimental

Crystal data	
$C_{19}H_{19}N_3O_2$	a = 12.030 (2) Å
$M_r = 321.37$	b = 7.1400 (14) Å
Monoclinic, $P2_1/n$	c = 20.210 (4) Å

$\beta = 104.01 \ (3)^{\circ}$
V = 1684.4 (6) Å ²
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.965, T_{\rm max} = 0.971$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 220 parameters $wR(F^2) = 0.117$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 0.19$ e Å⁻³3038 reflections $\Delta \rho_{min} = -0.18$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···N1	0.82	1.90	2.6275 (19)	148
$C10-H10C\cdotsO1^{i}$	0.96	2.46	3.386 (2)	163

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2375).

References

Alemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363–369.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kim, G. J. & Shin, J. H. (1999). Catal. Lett. 63, 83–89.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. **36**, 7–13.

Yan, G.-B., Yang, M.-H. & Zheng, Y.-F. (2006). *Acta Cryst.* E62, m3481–m3482.

You, Z.-L., Wang, J. & Chi, J.-Y. (2006). Acta Cryst. E62, 01652–01653. Zheng, Y.-F., Yan, G.-B. & Gu, Y.-B. (2006). Acta Cryst. E62, 05134–05135.

supplementary materials

Acta Cryst. (2008). E64, o2017 [doi:10.1107/S1600536808029930]

(E)-4-(5-Hydroxy-2-methylbenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Y.-F. Zheng and M.-H. Yang

Comment

The design, synthesis, characterization, and properties of Schiff bases and Schiff base complexes. (Yan *et al.*, 2006; Zheng *et al.*, 2006; You *et al.*, 2006) are still of great interest. Schiff bases that have solvent dependent UV/vis spectra (solvatochromicity) can be suitable NLO active materials (Alemi & Shaabani, 2000). They are also useful in asymmetric oxidation of methyl phenyl sulfide (Kim & Shin, 1999).

The molecule adopts trans configuration about the central C=N bond (Fig. 1). There is an intramolecular O-H···N hydrogen bond. Futhermore, weak C-H···O hydrogen bonds lead to the formation of a chain developping parallel to the b axis (Table 1, Fig. 2).

Experimental

Under nitrogen, a mixture of 5-hydroxy-2-methylbenzaldehyde (1.36 g,10 mmol) and 4-amino-1,2-dihydro-1,5-dimethyl -1-phenylpyrazol-3-one (2.03 g, 10 mmol) in absolute ethanol (120 ml) was refluxed for about 3 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was redissolved in CH_2Cl_2 (100 ml) and washed with water (2*10 ml)and brine(10 ml). After dried over Na₂SO₄, the solvent was removed under vacuum, and yellow solid was isolated in yield 92% (3.5 g). Colourless single crystals of the compound suitable for X-ray analysis were grown from CH_2Cl_2 and absolute ethanol(5:1) by slow evaporation of the solvent at room temperature over a period of about a week.

Refinement

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(aromatic)$ or $U_{iso}(H) = 1.5U_{eq}(methyl, O)$. The H attached to C18 are statistically disordered over two positions.

Figures

Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.

Fig. 2. Partial packing view showing the formation of the chain through C-H \cdots O hydrogen bondings displayed as dashed line. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) x, 1+y, z]

(E)-4-(5-Hydroxy-2-methylbenzylideneamino)-1,5-dimethyl-2-phenyl- 1H-pyrazol-3(2H)-one

Crystal data

$C_{19}H_{19}N_3O_2$	$F_{000} = 680$
$M_r = 321.37$	$D_{\rm x} = 1.267 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3038 reflections
a = 12.030 (2) Å	$\theta = 3.0 - 25.2^{\circ}$
b = 7.1400 (14) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 20.210 (4) Å	T = 298 (2) K
$\beta = 104.01 \ (3)^{\circ}$	Block, colourless
V = 1684.4 (6) Å ³	$0.28\times0.27\times0.23~mm$
Z = 4	

Data collection

Bruker APEXII area-detector diffractometer	3038 independent reflections
Radiation source: fine-focus sealed tube	2101 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 298(2) K	$\theta_{\rm max} = 25.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.965, T_{\max} = 0.971$	$k = -8 \rightarrow 8$
12992 measured reflections	<i>l</i> = −24→24

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.117$	$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.1685P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\text{max}} = 0.003$
3038 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$

220 parameters

 $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
N1	0.54536 (10)	0.08488 (19)	0.09989 (7)	0.0484 (4)	
N2	0.84821 (10)	0.10229 (18)	0.18740 (7)	0.0478 (4)	
N3	0.82904 (11)	0.27459 (18)	0.15274 (7)	0.0489 (4)	
01	0.74035 (9)	-0.16626 (16)	0.18989 (7)	0.0607 (4)	
O2	0.35066 (11)	0.19101 (19)	0.01845 (7)	0.0721 (4)	
H2	0.4177	0.1999	0.0399	0.108*	
C1	1.03702 (13)	0.0611 (2)	0.16517 (8)	0.0500 (4)	
H1	1.0178	0.1448	0.1289	0.060*	
C2	1.14339 (14)	-0.0241 (3)	0.18084 (9)	0.0569 (5)	
H2A	1.1959	0.0045	0.1553	0.068*	
C3	1.17288 (15)	-0.1505 (3)	0.23369 (11)	0.0659 (5)	
Н3	1.2445	-0.2076	0.2436	0.079*	
C4	1.09553 (15)	-0.1913 (3)	0.27139 (10)	0.0667 (5)	
H4	1.1144	-0.2776	0.3068	0.080*	
C5	0.98929 (14)	-0.1047 (2)	0.25717 (9)	0.0549 (5)	
Н5	0.9378	-0.1311	0.2836	0.066*	
C6	0.95980 (12)	0.0212 (2)	0.20351 (8)	0.0433 (4)	
C7	0.74648 (13)	-0.0029 (2)	0.17136 (9)	0.0469 (4)	
C8	0.66180 (13)	0.1204 (2)	0.13035 (8)	0.0454 (4)	
C9	0.71364 (13)	0.2853 (2)	0.12208 (8)	0.0472 (4)	
C10	0.66222 (17)	0.4584 (2)	0.08666 (11)	0.0650 (5)	
H10A	0.5826	0.4372	0.0659	0.097*	
H10B	0.7013	0.4912	0.0521	0.097*	
H10C	0.6696	0.5588	0.1191	0.097*	
C11	0.89730 (16)	0.4347 (2)	0.18612 (10)	0.0618 (5)	
H11A	0.8869	0.5390	0.1552	0.093*	
H11B	0.9768	0.4006	0.1986	0.093*	
H11C	0.8727	0.4689	0.2263	0.093*	
C12	0.49748 (13)	-0.0712 (2)	0.10893 (9)	0.0494 (4)	
H12	0.5403	-0.1634	0.1362	0.059*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C13	0.37643 (13)	-0.1053 (2)	0.07677 (8)	0.0469 (4)	
C14	0.30773 (14)	0.0258 (2)	0.03279 (9)	0.0524 (4)	
C15	0.19260 (15)	-0.0150 (3)	0.00338 (9)	0.0630 (5)	
H15	0.1475	0.0710	-0.0258	0.076*	
C16	0.14615 (15)	-0.1806 (3)	0.01736 (9)	0.0625 (5)	
H16	0.0694	-0.2050	-0.0025	0.075*	
C17	0.21076 (14)	-0.3139 (3)	0.06057 (9)	0.0581 (5)	
C18	0.15794 (18)	-0.4936 (3)	0.07672 (13)	0.0859 (7)	
H18A	0.2150	-0.5676	0.1070	0.129*	0.50
H18B	0.1283	-0.5621	0.0353	0.129*	0.50
H18C	0.0968	-0.4660	0.0981	0.129*	0.50
H18D	0.0784	-0.4962	0.0533	0.129*	0.50
H18E	0.1651	-0.5017	0.1250	0.129*	0.50
H18F	0.1966	-0.5978	0.0622	0.129*	0.50
C19	0.32577 (13)	-0.2731 (2)	0.08928 (9)	0.0546 (4)	
H19	0.3703	-0.3611	0.1178	0.066*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0449 (8)	0.0456 (8)	0.0570 (8)	0.0014 (6)	0.0167 (6)	-0.0045 (6)
N2	0.0432 (7)	0.0360 (7)	0.0657 (9)	-0.0001 (6)	0.0162 (6)	0.0038 (6)
N3	0.0522 (8)	0.0338 (7)	0.0632 (9)	-0.0023 (6)	0.0190 (7)	0.0010 (6)
01	0.0527 (7)	0.0390 (7)	0.0894 (9)	-0.0031 (5)	0.0155 (6)	0.0106 (6)
02	0.0633 (8)	0.0671 (9)	0.0836 (10)	0.0044 (7)	0.0131 (7)	0.0225 (7)
C1	0.0485 (9)	0.0541 (10)	0.0469 (9)	-0.0024 (8)	0.0108 (7)	-0.0004 (8)
C2	0.0462 (9)	0.0640 (12)	0.0617 (11)	-0.0030 (8)	0.0157 (8)	-0.0062 (9)
C3	0.0460 (10)	0.0657 (13)	0.0818 (14)	0.0045 (9)	0.0072 (9)	0.0020 (11)
C4	0.0594 (11)	0.0615 (12)	0.0729 (13)	0.0021 (9)	0.0040 (9)	0.0177 (10)
C5	0.0528 (10)	0.0541 (11)	0.0582 (11)	-0.0057 (8)	0.0139 (8)	0.0056 (9)
C6	0.0412 (8)	0.0386 (9)	0.0492 (9)	-0.0047 (7)	0.0092 (7)	-0.0046 (7)
C7	0.0444 (9)	0.0396 (9)	0.0596 (10)	-0.0003 (7)	0.0180 (7)	-0.0028 (8)
C8	0.0449 (9)	0.0402 (9)	0.0543 (10)	0.0023 (7)	0.0182 (7)	-0.0031 (7)
C9	0.0494 (9)	0.0414 (9)	0.0536 (10)	0.0036 (7)	0.0176 (7)	-0.0031 (7)
C10	0.0704 (12)	0.0459 (11)	0.0794 (13)	0.0078 (9)	0.0196 (10)	0.0107 (9)
C11	0.0649 (11)	0.0410 (10)	0.0824 (13)	-0.0108 (8)	0.0234 (10)	-0.0065 (9)
C12	0.0448 (9)	0.0455 (10)	0.0584 (10)	0.0048 (7)	0.0137 (7)	-0.0030 (8)
C13	0.0424 (8)	0.0487 (10)	0.0507 (9)	0.0034 (7)	0.0135 (7)	-0.0051 (8)
C14	0.0536 (10)	0.0530 (11)	0.0520 (10)	0.0042 (8)	0.0152 (8)	0.0028 (8)
C15	0.0528 (10)	0.0784 (14)	0.0532 (11)	0.0096 (10)	0.0042 (8)	0.0047 (10)
C16	0.0475 (10)	0.0798 (14)	0.0563 (11)	-0.0026 (9)	0.0051 (8)	-0.0087 (10)
C17	0.0498 (9)	0.0611 (11)	0.0628 (11)	-0.0055 (9)	0.0122 (8)	-0.0103 (9)
C18	0.0655 (13)	0.0754 (15)	0.1124 (18)	-0.0206 (11)	0.0128 (12)	-0.0031 (13)
C19	0.0469 (9)	0.0509 (10)	0.0647 (11)	0.0027 (8)	0.0108 (8)	-0.0023 (9)

Geometric parameters (Å, °)

N1—C12	1.288 (2)	C10—H10A	0.9600
N1—C8	1.410 (2)	C10—H10B	0.9600

N2—C7	1.405 (2)	C10—H10C	0.9600
N2—N3	1.4068 (18)	C11—H11A	0.9600
N2—C6	1.425 (2)	C11—H11B	0.9600
N3—C9	1.379 (2)	C11—H11C	0.9600
N3—C11	1.472 (2)	C12—C13	1.464 (2)
O1—C7	1.2330 (19)	C12—H12	0.9300
O2—C14	1.347 (2)	C13—C19	1.395 (2)
O2—H2	0.8200	C13—C14	1.412 (2)
C1—C6	1.376 (2)	C14—C15	1.399 (2)
C1—C2	1.383 (2)	C15—C16	1.366 (3)
C1—H1	0.9300	C15—H15	0.9300
C2—C3	1.378 (3)	C16—C17	1.394 (3)
C2—H2A	0.9300	C16—H16	0.9300
C3—C4	1.369 (3)	C17—C19	1.395 (2)
С3—Н3	0.9300	C17—C18	1.503 (3)
C4—C5	1.386 (3)	C18—H18A	0.9600
C4—H4	0.9300	C18—H18B	0.9600
C5—C6	1.387 (2)	C18—H18C	0.9600
С5—Н5	0.9300	C18—H18D	0.9600
С7—С8	1.446 (2)	C18—H18E	0.9600
C8—C9	1.361 (2)	C18—H18F	0.9600
C9—C10	1.486 (2)	С19—Н19	0.9300
C12—N1—C8	121.67 (14)	H11A—C11—H11C	109.5
C7—N2—N3	108.89 (12)	H11B—C11—H11C	109.5
C7—N2—C6	123.74 (13)	N1—C12—C13	120.77 (15)
N3—N2—C6	120.05 (12)	N1-C12-H12	119.6
C9—N3—N2	107.34 (12)	C13—C12—H12	119.6
C9—N3—C11	123.52 (14)	C19—C13—C14	117.94 (15)
N2—N3—C11	116.40 (13)	C19—C13—C12	119.56 (15)
C14—O2—H2	109.5	C14—C13—C12	122.50 (16)
C6—C1—C2	119.58 (16)	O2—C14—C15	118.85 (16)
С6—С1—Н1	120.2	O2—C14—C13	121.29 (15)
C2—C1—H1	120.2	C15-C14-C13	119.86 (17)
C3—C2—C1	121.07 (18)	C16-C15-C14	120.31 (17)
С3—С2—Н2А	119.5	С16—С15—Н15	119.8
C1—C2—H2A	119.5	C14—C15—H15	119.8
C4—C3—C2	119.25 (17)	C15—C16—C17	121.76 (17)
С4—С3—Н3	120.4	C15-C16-H16	119.1
С2—С3—Н3	120.4	С17—С16—Н16	119.1
C3—C4—C5	120.45 (18)	C16—C17—C19	117.67 (17)
C3—C4—H4	119.8	C16—C17—C18	121.21 (17)
C5—C4—H4	119.8	C19—C17—C18	121.12 (18)
C4—C5—C6	119.99 (17)	C17-C18-H18A	109.5
C4—C5—H5	120.0	C17—C18—H18B	109.5
С6—С5—Н5	120.0	H18A—C18—H18B	109.5
C1—C6—C5	119.64 (15)	C17—C18—H18C	109.5
C1—C6—N2	120.95 (15)	H18A—C18—H18C	109.5
C5—C6—N2	119.37 (14)	H18B—C18—H18C	109.5
O1—C7—N2	123.25 (15)	C17—C18—H18D	109.5

supplementary materials

O1—C7—C8	131.64 (15)	H18A—C18—H18D	141.1
N2—C7—C8	105.10 (14)	H18B—C18—H18D	56.3
C9—C8—N1	122.57 (15)	H18C—C18—H18D	56.3
C9—C8—C7	108.46 (14)	C17—C18—H18E	109.5
N1—C8—C7	128.93 (15)	H18A—C18—H18E	56.3
C8—C9—N3	109.78 (14)	H18B—C18—H18E	141.1
C8—C9—C10	128.96 (15)	H18C—C18—H18E	56.3
N3—C9—C10	121.26 (15)	H18D-C18-H18E	109.5
C9—C10—H10A	109.5	C17—C18—H18F	109.5
C9—C10—H10B	109.5	H18A—C18—H18F	56.3
H10A—C10—H10B	109.5	H18B—C18—H18F	56.3
C9—C10—H10C	109.5	H18C-C18-H18F	141.1
H10A-C10-H10C	109.5	H18D-C18-H18F	109.5
H10B-C10-H10C	109.5	H18E-C18-H18F	109.5
N3—C11—H11A	109.5	C13—C19—C17	122.45 (16)
N3—C11—H11B	109.5	С13—С19—Н19	118.8
H11A—C11—H11B	109.5	С17—С19—Н19	118.8
N3—C11—H11C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2…N1	0.82	1.90	2.6275 (19)	148
C10—H10C…O1 ⁱ	0.96	2.46	3.386 (2)	163
Symmetry codes: (i) x , $y+1$, z .				

Fig. 1

